This work is part of the Computer Algebra Test Suite (CATS). These files show the results that Axiom computes given the set of integrals listed in
  Spiegel, Murray R. 
  Mathematical Handbook of Formulas and Tables
  Schaum's Outline Series McGraw-Hill 1968 

Each integral is computed by Axiom and compared against the published result.

Each Axiom result is differenced from the published result and reduced to a constant (usually 0).

Schaums



Schaums 14.59-14.83  source pdf
Schaums 14.84-14.104  source pdf
Schaums 14.104-14.112  source pdf
Schaums 14.113-.119  source pdf
Schaums 14.120-14.124  source pdf
Schaums 14.125-14.143  source pdf
Schaums 14.144-14.162  source pdf
Schaums 14.163-14.181  source pdf
Schaums 14.182-14.209  source pdf
Schaums 14.210-14.236  source pdf
Schaums 14.237-14.264  source pdf
Schaums 14.265-14.279  source pdf
Schaums 14.280-14.298  source pdf
Schaums 14.299-14.310  source pdf
Schaums 14.311-14.324  source pdf
Schaums 14.325-14.338  source pdf
Schaums 14.339-14.368  source pdf
Schaums 14.369-14.398  source pdf
Schaums 14.399-14.428  source pdf
Schaums 14.429-14.439  source pdf
Schaums 14.440-14.450  source pdf
Schaums 14.451-14.460  source pdf
Schaums 14.461-14.470  source pdf
Schaums 14.471-14.508  source pdf
Schaums 14.509-14.524  source pdf
Schaums 14.525-14.539  source pdf
Schaums 14.540-14.561  source pdf
Schaums 14.562-14.589  source pdf
Schaums 14.590-14.603  source pdf
Schaums 14.604-14.614  source pdf
Schaums 14.615-14.625  source pdf
Schaums 14.626-14.635  source pdf
Schaums 14.636-14.645  source pdf
Schaums 14.646-14.677  source pdf



Kamke



This portion of the CATS suite involves Ordinary Differential Equations. This is the Kamke test suite as published by E. S. Cheb-Terrab. They have been rewritten using Axiom syntax. Where possible we show that the particular solution actually satisfies the original ordinary differential equation.

Kamke0 txt source pdf
Kamke1 txt source pdf
Kamke2 txt source pdf
Kamke3 txt source pdf
Kamke4 txt source pdf
Kamke5 txt source pdf
Kamke6 txt source pdf
Kamke7 txt source pdf



Charlwood



This is the Charlwood test suite

Charlwood source pdf



Rich Integrals



This portion of the CATS suite involves Albert Rich's Integration Suite. They have been rewritten using Axiom syntax.
See Integration Test Suite Problems

(a+b x)^m (c+d x)^n (part 1) source pdf
(a+b x)^m (c+d x)^n (part 2) source pdf

(a+b x)^m (A+B x) (d+e x)^p source pdf

(a+b x)^m (c+d)^n (e+f x)^p (part 1) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 2) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 3) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 4) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 5) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 6) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 7) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 8) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 9) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 10) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 11) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 12) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 13) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 14) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 15) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 16) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 17) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 18) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 19) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 20) source pdf

x^m (a+b x^n)^p (part 1) source pdf
x^m (a+b x^n)^p (part 2) source pdf
x^m (a+b x^n)^p (part 3) source pdf
x^m (a+b x^n)^p (part 4) source pdf
x^m (a+b x^n)^p (part 5) source pdf
x^m (a+b x^n)^p (part 6) source pdf
x^m (a+b x^n)^p (part 7) source pdf
x^m (a+b x^n)^p (part 8) source pdf
x^m (a+b x^n)^p (part 9) source pdf
x^m (a+b x^n)^p (part 10) source pdf

(a+b x^n)^m (c+d x^n)^p source pdf

x^m (a+b x^n)^p (c+d x^n)^q (part 1) source pdf
x^m (a+b x^n)^p (c+d x^n)^q (part 2) source pdf
x^m (a+b x^n)^p (c+d x^n)^q (part 3) source pdf
x^m (a+b x^n)^p (c+d x^n)^q (part 4) source pdf
x^m (a+b x^n)^p (c+d x^n)^q (part 5) source pdf

(a+b x^n)^m (c+d x^n)^p (e+f x^n)^q (part 1) source pdf

x^m (a x^q+b x^n)^p (part 1) source pdf
x^m (a x^q+b x^n)^p (part 2) source pdf
x^m (a x^q+b x^n)^p (part 1) source pdf
x^m (a x^q+b x^n)^p (part 2) source pdf

x^m (a+b x+c x^2)^p (part 1) source pdf
x^m (a+b x+c x^2)^p (part 2) source pdf

(d+e x)^m (a+b x+c x^2)^p (part 1) source pdf
(d+e x)^m (a+b x+c x^2)^p (part 2) source pdf
(d+e x)^m (a+b x+c x^2)^p (part 3) source pdf
(d+e x)^m (a+b x+c x^2)^p (part 4) source pdf
(d+e x)^m (a+b x+c x^2)^p (part 5) source pdf
(d+e x)^m (a+b x+c x^2)^p (part 6) source pdf

x^m (d+e x)^n (a+b x+c x^2)^p (part 1) source pdf
x^m (d+e x)^n (a+b x+c x^2)^p (part 2) source pdf
x^m (d+e x)^n (a+b x+c x^2)^p (part 3) source pdf
x^m (d+e x)^n (a+b x+c x^2)^p (part 4) source pdf
x^m (d+e x)^n (a+b x+c x^2)^p (part 5) source pdf



Rich Derivatives



The Rich Integration test suite provides integrands and their optimal integrals. These have been verified by Albert Rich using Mathematica. This test suite shows Axiom's results.

(a+b x)^m (c+d x)^n (part 1) source pdf
(a+b x)^m (c+d x)^n (part 2) source pdf

(a+b x)^m (A+B x) (d+e x)^p source pdf

(a+b x)^m (c+d)^n (e+f x)^p (part 1) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 2) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 3) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 4) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 5) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 6) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 7) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 8) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 9) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 10) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 11) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 12) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 13) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 14) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 15) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 16) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 17) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 18) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 19) source pdf
(a+b x)^m (c+d)^n (e+f x)^p (part 20) source pdf

x^m (a+b x^n)^p (part 1) source pdf
x^m (a+b x^n)^p (part 2) source pdf
x^m (a+b x^n)^p (part 3) source pdf
x^m (a+b x^n)^p (part 4) source pdf
x^m (a+b x^n)^p (part 5) source pdf
x^m (a+b x^n)^p (part 6) source pdf

(a+b*x^n)^m*(c+d*x^n)^p source pdf

x^m (a+b x^n)^p (c+d x^n)^q (part 1) source pdf
x^m (a+b x^n)^p (c+d x^n)^q (part 2) source pdf
x^m (a+b x^n)^p (c+d x^n)^q (part 3) source pdf
x^m (a+b x^n)^p (c+d x^n)^q (part 4) source pdf
x^m (a+b x^n)^p (c+d x^n)^q (part 5) source pdf




Rich



This portion of the CATS suite involves Albert Rich's Integration Suite. They have been rewritten using Axiom syntax.

algebraic000-099 source pdf
algebraic100-199 source pdf
algebraic200-299 source pdf
algebraic300-399 source pdf
algebraic400-461 source pdf

error000-078 source pdf

exponential source pdf

hyper000-099 source pdf
hyper100-199 source pdf
hyper100-199 source pdf
hyper200-299 source pdf
hyper300-399 source pdf
hyper400-499 source pdf
hyper500-599 source pdf
hyper600-699 source pdf
hyper700-799 source pdf
hyper800-899 source pdf
hyper900-999 source pdf
hyper1000-1098 source pdf

intfunc000-032 source pdf

invhyper000-099 source pdf
invhyper100-199 source pdf
invhyper200-296 source pdf

invtrig000-092 source pdf

log000-099 source pdf
log100-199 source pdf
log200-299 source pdf
log300-391 source pdf

rational source pdf

specfunc000-022 source pdf

trig000-099 source pdf
trig100-199 source pdf
trig200-299 source pdf
trig300-399 source pdf
trig400-499 source pdf
trig500-599 source pdf
trig600-699 source pdf
trig700-799 source pdf
trig800-899 source pdf
trig900-920 source pdf