The 30 Year Horizon

Manuel Bronstein
James Davenport
Albrecht Fortenbacher
Jocelyn Guidry
Michael Monagan
Jonathan Steinbach
Stephen Watt
William Burge
Michael Dewar
Patrizia Gianni
Richard Jenks
Scott Morrison
Robert Sutor
Jim Wen
Timothy Daly
Martin Dunstan
Johannes Grabmeier
Larry Lambe
William Sit
Barry Trager
Clifton Williamson

Volume 12: Axiom Crystal
This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

- Neither the name of The Numerical Algorithms Group Ltd. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Inclusion of names in the list of credits is based on historical information and is as accurate as possible. Inclusion of names does not in any way imply an endorsement but represents historical influence on Axiom development.
Michael Albaugh
Christian Aistleitner
S.J. Atkins
Martin Baker
David R. Barton
Gilbert Baumslag
Jay Belanger
Vladimir Bondarenko
Alexandre Bouyer
Peter A. Broadbery
Christopher Brown
Luanne Burns
Quentin Carpent
Bruce Char
Bobby Cheng
Gregory V. Chudnovsky
Jia Zhao Cong
Don Coppersmith
Gary Cornell
David Cyganski
Timothy Daly Jr.
James Demmel
Inderjit Dhillon
Gabriel Dos Reis
Zlatko Drmac
Lee Duham
Dominique Duval
Lars Erickson
Bertfried Fauser
Brian Ford
Constantine Frangos
Marc Gaetano
Kathy Gerber
Samantha Goldrich
Laureano Gonzalez-Vega
Matt Grayson
Vladimir Grinberg
Jocelyn Guidry
Satoshi Hamaguchi
Richard Hanson
Vilya Harvey
Dan Hatton
Ralf Hemmecke
Nicholas J. Higham
Gernot Hueber
Richard Jenks
Kyriakos Kalorkoti
Wilfrid Kendall
Keshav Kini
Igor Kozachenko
Cyril Alberga
Richard Anderson
Jeremy Avigad
Stephen Balzac
Thomas Baruchel
Michael Becker
David Bindel
Mark Botch
Karen Broman
Martin Brock
Stephen Buchwald
William Burge
Pierre Casteran
Ondrej Certik
Cheekai Chin
Mark Clements
Josh Cohen
George Corliss
Meino Cramer
Nathaniel Daly
James H. Davenport
Didier Deshommes
Jack Dongarra
Claire DiCrescendo
Lionel Ducos
Martin Dunstan
Robert Edwards
Mark Fahey
Stuart Feldman
Albrecht Fortenbacher
Timothy Freeman
Rudiger Gebauer
Patricia Gianni
Holger Gollan
Stephen Gortler
Klaus Ebbe Grue
Oswald Gschneider
Gaetan Hache
Sven Hammarling
Richard Harke
Martin Hassner
Waldek Hebisch
Henderson
Hoon Hong
Pietro Iglio
Bo Kagstrom
Kai Kaminski
Tony Kennedy
Ted Kosan
Fred Krogh
Roy Adler
George Andrews
Henry Baker
Yuri Baransky
Gerald Baumgartner
Nelson H. F. Beebe
Fred Blair
Raoul Bourquin
Wolfgang Brehm
Manuel Bronstein
Florian Bundschuh
Ralph Byers
Robert Cavines
Tzu-Yi Chen
David V. Chudnovsky
James Cloos
Christophe Conil
Robert Corless
Jeremy Du Croz
Timothy Daly Sr.
David Day
Michael Dewar
Jean Della Dora
Sam Dooley
Iain Duff
Brian Dupee
Heow Eide-Goodman
Richard Fateman
John Fletcher
George Frances
Korinn Fu
Van de Geijn
Gustavo Goertkin
Teresa Gomez-Diaz
Johannes Grabmeier
James Griesmer
Ming Gu
Steve Hague
Mike Hansen
Bill Hart
Arthur S. Hathaway
Karl Hegbloom
Antoine Hersen
Roger House
Alejandro Jakubi
William Kahan
Grant Keady
David Kincaid
Paul Kosinski
Klaus Kusche
Contents

Axiom Crystal Design

1.1 Book presentation .. 1
1.2 Book spines .. 1
1.3 Linking information .. 1

Experiments

1.2 Hide/Show a div element .. 3
1.3 Hide/Show a nested div element .. 3
1.4 Hide/Show a ring of elements .. 4

Other work

1.5 Understanding the Dynamics of Complex Lisp Programs [Loet09] .. 7

Bibliography

9
New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commercial product. On September 3, 2002 Axiom was released under the Modified BSD license, including this document. On August 27, 2003 Axiom was released as free and open source software available for download from the Free Software Foundation's website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr. Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The second volume is for programmers. The third volume is reference material. We’ve also added a fourth volume for developers. All of these changes represent an experiment in print-on-demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three hundred man-years of research and has, as of September 3, 2003, 143 people listed in the credits. All of these people have contributed directly or indirectly to making Axiom available. Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent the tools that support the Computational Mathematician working 30 years from now. How will research be done when every bit of mathematical knowledge is online and instantly available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million domains? How can we integrate theory with code? How will we integrate theorems and proofs of the mathematics with space-time complexity proofs and running code? What visualization tools are needed? How do we support the conceptual structures and semantics of mathematics in effective ways? How do we support results from the sciences? How do we teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
Axiom Crystal Design

1.1 Book presentation

In the book "Science at the Edge" by John Brockman (ISBN 978-1-4027-5450-0), in the chapter "The second coming – A manifesto" by David Gelernter, David talks about the way we interact with computers. This has some bearing on the crystal notion.

Book spines

David points out that we currently have a "desktop metaphor" which allows us to view our computer interactions as though we were moving things around on a desktop, typically folders and documents. There are several limitations of this metaphor.

The first is that there is a limited amount of space on the desktop. He proposes the idea of a landscape where the computer is just a moving window. This gives much more real estate to hold information.

The lack of desktop space leads to the icon idea to capture a small representation of a document or folder. There are limitations to how representative such a tiny image can be of the original. A book spine is an excellent representation of the contents of a book but a tiny picture of a folder, not so much.

If I look at this idea in terms of the Crystal concept I can see two parallels. The first idea (desktop/icon) vs (landscape/book) is related to the organization of Axiom. There is an ongoing effort to organize the whole of the system into some small number of books. The whole system is then somewhat similar to an encyclopedia where there is a shelf of related information.

Currently the algebra books are on the order of 5000 pages of raw material. They will likely grow many times that size as literate information is added. One website representation would show the Axiom books as book-spines where the algebra section could be broken up (visually, not actually) as encyclopedia-like images. Thus, you would find the algebra "books" from A-C, D-F, etc.

Linking information

A second idea from the book is the limitations of the hierarchical file system idea. Why does a particular file have to have a name? Why does a particular file only live in one folder?

For the first question, he comments that if you had 3 dogs it is reasonable to name them.
But if you have 10,000 cows it probably is not. Some information can be anonymous.

For the second question, he asks why doesn’t a folder "grab" the information so that a particular file might not reside in multiple folders. Unix has this idea embodied in links but Windows doesn’t support the idea.

He suggests that it might be reasonable to have the folders be active so that a particular piece of information, say a travel receipt, might be "grabbed" by the taxes folder and the travel expense folder.

Crystal's view of this is somewhat different. Information isn’t named. It resides in "the problem" floating in space. The naming of information is related to the view.

So if we take a problem in space, say all of your financial information and wrap a crystal around it we can view it in multiple ways, each of which represents a "facet". Moving between these views corresponds to rotating the crystal to view "the problem" through a different facet.

So, in a financial crystal, you might have a taxes facet, a travel expense facet, an assets facet, a checkbook facet, etc. A travel receipt from a business trip which was added to "the problem' would show up in all of these facets in different ways. It is up to the facet to organize this piece of information into its proper place based on the intent of the facet.

"The problem" just is. The meaning of the problem, the division of the problem into parts, the naming of the parts, the organization of the parts, indeed, the very idea that a problem has parts is a function of the facet, not a function of the problem.
Experiments

1.2 Hide/Show a div element

Here we demonstrate the ability to hide or show a named div element.

```
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
  <meta http-equiv="Content-Type" content="text/xml" charset="us-ascii"/>
  <style>
    html { color:#000000; }
  </style>
  <script language="JavaScript" type="text/javascript">
    function hideshow(flag) {
      var c = document.getElementById('crystal');
      c.style.display=flag;
    }
  </script>
</head>
<body>
it works
  <div id="crystal" style="overflow:hidden;display:none">
    this is visible
  </div>
</body>
</html>
```

1.3 Hide/Show a nested div element

Now that we can hide or show a div element we demonstrate the ability to hide or show a nested div element.

```
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
  <meta http-equiv="Content-Type" content="text/xml" charset="us-ascii"/>
</head>
<body>
</body>
</html>
```
1.4 Hide/Show a ring of elements

Now that we can hide or show a div element we demonstrate the ability to hide or show a ring of div elements. There are 3 elements in the ring, 'facet1', 'facet2', and 'facet3'. Each facet can open or close the associated 'answer' sub-div element.

"hide/show a ring of elements"

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xml" charset="us-ascii"/>
<style>
html { color:#000000; }
</style>
<seript language="JavaScript" type="text/javascript">
 function showhide(id,flag) {
 var c = document.getElementById(id);
 c.style.display=flag;
 }
 function toggle(id) {
 var c = document.getElementById(id);
 if (c.style.display == 'block') {
 c.style.display='none'
 } else {
 c.style.display='block'
 }
 }
 </script>
<body>
 it works
 <div id="crystal" style="overflow:hidden;display:none">

 integrate(sin x,x)

 <div id="facet1" style="overflow:hidden;display:none">

 -cos(x)
 </div>
 </div>
 <hr/>
 Hide
 Show
</body>
</html>
1.4. HIDE/SHOW A RING OF ELEMENTS

```javascript
var circle = ['facet1', 'facet2', 'facet3'];
var here = 'facet1';
var herept = 0;
function showhide(id, flag) {
    var c = document.getElementById(id);
    c.style.display = flag;
}
function toggle(id) {
    var c = document.getElementById(id);
    if (c.style.display == 'block') {
        c.style.display = 'none';
    } else {
        c.style.display = 'block';
    }
}
/* hide the old, get the next one in the circle, show it */
function docircle() {
    var c = document.getElementById(here);
    c.style.display = 'none';
    if (herept == 2) {
        herept = 0;
    } else {
        herept = herept + 1;
    }
    here = circle[herept];
    c = document.getElementById(here);
    c.style.display = 'block';
}
</script>
</head>
<body onload="showhide('facet1', 'block')">
it works
<div id="facet1" style="overflow:hidden;display:none">
<a href="javascript:docircle()">
integrate(cos x, x)
</a>
<br/>
<a href="javascript:toggle('facet1a')">toggle</a>
<div id="facet1a" style="overflow:hidden;display:none">
<a href="javascript:showhide('facet1a', 'none')">
<br/>
<pre>
sin(x)
</pre>
</a>
</div>
</div>
<div id="facet2" style="overflow:hidden;display:none">
<a href="javascript:docircle()">
integrate(sin x, x)
</a>
<br/>
<a href="javascript:toggle('facet2a')">toggle</a>
<div id="facet2a" style="overflow:hidden;display:none">
<a href="javascript:showhide('facet2a', 'none')">
<br/>
</a>
</div>
</div>
</body>
```
\[-\cos(x)\]

\[
\int \tan x \, dx = \frac{2 \log(\tan(x) + 1)}{2}
\]
Other work

1.5 Understanding the Dynamics of Complex Lisp Programs [Loet09]

Abstract: Recent advances in web technologies and the availability of robust Lisp libraries supporting them have made it possible to think of new ways of understanding and debugging large applications. In this paper, we will discuss two basic ideas for assessing and verifying the behavior of Lisp programs. First, we propose to use a web browser for graphically displaying debug output in a similar but more versatile way as the Lisp listener is normally used to print output traces. And second, we propose a method for creating HTML visualisations of complex data and control structures that don’t trade in level of detail for readability. We will introduce GTFL (a Graphical Terminal For Lisp), which we have implemented based on these two ideas, and discuss its applications.

This paper is of interest, not for its lisp tracing output, but for its ability to pipeline output to a browser and the technology that underlies the whole of it.

GTFL [Loet00] uses Hunchentoot [Weit06] as a common lisp web server. It uses CL-WHO [Weit03] as the Lisp/HTML markup language, HT-AJAX [Mars07] as an AJAX framework. The combination of these tools with GTFL allows nicely formatted output that the browser can dynamically layout, expand, and contract.
Bibliography

 Link: http://martin-loetzsch.de/gtfl

 Link: http://www.martin-loetzsch.de/papers/loetzsch09understanding.pdf

 Link: http://common-lisp.net/project/ht-ajax/ht-ajax.html

 Link: http://www.weitz.de/cl-who/

 Link: http://www.weitz.de/hunchentoot