The 30 Year Horizon

Manuel Bronstein
James Davenport
Albrecht Fortenbacher
Jocelyn Gidry
Michael Monagan
Jonathan Steinbach
Stephen Watt

William Burge
Michael Dewar
Patrizia Gianni
Richard Jenks
Scott Morrison
Robert Sutor
Jim Wen

Timothy Daly
Martin Dunstan
Johannes Grabmeier
Larry Lambe
William Sit
Barry Trager
Clifton Williamson

Volume 13: Proving Axiom Correct
This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of The Numerical ALgorithms Group Ltd. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Inclusion of names in the list of credits is based on historical information and is as accurate as possible. Inclusion of names does not in any way imply an endorsement but represents historical influence on Axiom development.

- Michael Albaugh
- Cyril Alberga
- Roy Adler
- Christian Aistleitner
- Richard Anderson
- George Andrews
- S.J. Atkins
- Henry Baker
- Martin Baker
- Stephen Balzac
- Yurij Baransky
- David R. Barton
- Gerald Baumgartner
- Gilbert Baumslag
- Michael Becker
- Nelson H. F. Beebe
- Jay Belanger
- David Bindel
- Fred Blair
- Vladimir Bondarenko
- Mark Botch
- Raoul Bourquin
- Alexandre Bouyer
- Karen Branan
- Peter A. Broadbery
- Martin Brock
- Manuel Bronstein
- Stephen Buchwald
- Florian Bundschuh
- Luanne Burns
- William Burge
- Ralph Byers
- Quentin Carpent
- Robert CAVINESS
- Bruce Char
- Ondrej Certik
- Tzu-Yi CHEN
- Cheekai Chin
- David V. Chudnovsky
- Gregory V. Chudnovsky
- Mark Clements
- James Cloos
- Jia Zhao Cong
- Josh Cohen
- Christophe Conil
- Don Coppersmith
- George Corliss
- Robert Corless
- Gary Cornell
- Meino Cramer
- Jeremy Du Croz
- David Day
- Timothy Daly Jr.
- Nathaniel Daly
- Timothy Daly Sr.
- James Demmel
- Didier Deshommes
- Michael Dewar
- Jack Dongarra
- Jean Della Dora
- Gabriel Dos Reis
- Claire DiCrescendo
- Sam Dooley
- Lionel Ducos
- Iain Duff
- Lee Duhem
- Martin Dunstan
- Brian Dupee
- Dominique Duval
- Robert Edwards
- Heow Eide-Goodman
- Lars Erickson
- Richard Fateman
- Bertfried Fauser
- Stuart Feldman
- John Fletcher
- Brian Ford
- Albrecht Fortenbacher
- George Frances
- Constantine Frangos
- Timothy Freeman
- Korrinn Fu
- Marc Gaetano
- Rudiger Gebauer
- Van de Geijn
- Kathy Gerber
- Patricia Gianni
- Samantha Goldrich
- Holger Gollan
- Teresa Gomez-Diaz
- Laureano Gonzalez-Vega
- Stephen GORTLER
- Johannes Grabmeier
- Matt Grayson
- Klaus Ebbe Grue
- James Griesmer
- Vladimir Grinberg
- Oswald Gschnitzer
- Ming Gu
- Jocelyn Guidry
- Gaetan Hache
- Steve Hague
- Satoshi Hamaguchi
- Sven Hammarling
- Mike Hansen
- Richard Hanson
- Richard Harke
- Bill Hart
- Vilya Harvey
- Martin Hassner
- Arthur S. Hathaway
- Dan Hatton
- Waldek Hebisch
- Karl Hegbloom
- Ralf Hemmecke
Henderson Antoine Hersen Roger House
Gernot Hueber Pietro Iglio Alejandro Jakubi
Richard Jenks William Kahan Kai Kaminski
Grant Keady Wilfrid Kendall Tony Kennedy
Ted Kosan Paul Kosinski Klaus Kusche
Bernhard Kutzler Tim Lahey Larry Lambe
Kaj Laurson George L. Legendre Franz Lehner
Frederic Lelobey Michel Levaud Howard Levy
Ren-Cang Li Rudiger Loos Michael Lucks
Richard Luczak Cammi Maguire Francois Maltey
Alasdair McAndrew Bob McElrath Michael McGertrick
Edi Meier Ian Meikle David Mentre
Victor S. Miller Gerard Milmeister Mohammed Mobarak
H. Michael Moeller Michael Monagan Marc Moreno-Maza
Scott Morrison Joel Moses Mark Murray
William Naylor Patrice Naudin C. Andrew Neff
John Nelder Godfrey Nolan Arthur Norman
Jinzhong Niu Michael O'Connor Summat Oemrawsingh
Kostas Oikonomou Humberto Ortiz-Zuazaga Julian A. Padget
Bill Page David Parnas Susan Pelzel
Michel Petitot Didier Pinchon Ayad Pinkus
Frederick H. Pitts Jose Alfredo Portes Gregorio Quintana-Orti
Claude Quitte Arthur C. Ralfs Norman Ramsey
Anatoly Raportirenko Albert D. Rich Michael Richardson
Guilherme Reis Huan Ren Renaud Rioboo
Jean Rivlin Nicolas Robidoux Simon Robinson
Raymond Rogers Michael Rothstein Martin Rubey
Philip Santas Alfred Scheerhorn William Schelter
Gerhard Schneider Martin Schoenert Marshall Schor
Fritjof Schulze Fritz Schwarz Steven Segletes
V. Sina Nick Simicich William Sit
Elena Smirnova Jonathan Steinbach Fabio Stumbo
Christine Sundaresan Robert Sutor Moss E. Sweedler
Eugene Surowitz Max Tegmark T. Doug Telford
James Thatcher Balbir Thomas Mike Thomas
Dylan Thurston Steve Toleque Barry Trager
Themos T. Tsikas Gregory Vanuxem Bernhard Wall
Stephen Watt Jaap Weel Juergen Weiss
M. Weller Mark Wegman James Wen
Thorsten Werther Michael Wester R. Clint Whaley
John M. Wiley Berhard Will Clifton J. Williamson
Stephen Wilson Shmuel Winograd Robert Wisbauer
Sandra Wityak Waldemar Wiwianka Knut Wolf
Liu Xiaojun Clifford Yapp David Yun
Vadim Zhilynikov Richard Zippel Evelyn Zoernack
Bruno Zuercher Dan Zwilling
Contents

1 Here is a problem ... 3
 1.1 Approaches ... 4

2 Theory .. 7

3 Software Details ... 9
 3.1 Installed Software .. 9
 3.2 Coq Spad proofs .. 11
 3.3 ACL2 Lisp proofs .. 11
 3.4 Lisp to Hardware ... 11
New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commercial product. On September 3, 2002 Axiom was released under the Modified BSD license, including this document. On August 27, 2003 Axiom was released as free and open source software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr. Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The second volume is for programmers. The third volume is reference material. We’ve also added a fourth volume for developers. All of these changes represent an experiment in print-on-demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three hundred man-years of research and has, as of September 3, 2003, 143 people listed in the credits. All of these people have contributed directly or indirectly to making Axiom available. Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent the tools that support the Computational Mathematician working 30 years from now. How will research be done when every bit of mathematical knowledge is online and instantly available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million domains? How will we integrate theory with code? How will we integrate theorems and proofs of the mathematics with space-time complexity proofs and running code? What visualization tools are needed? How do we support the conceptual structures and semantics of mathematics in effective ways? How do we support results from the sciences? How do we teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
Our basic premise is that the ability to construct and modify programs will not improve without a new and comprehensive look at the entire programming process. Past theoretical research, say, in the logic of programs, has tended to focus on methods for reasoning about individual programs; little has been done, it seems to us, to develop a sound understanding of the process of programming – the process by which programs evolve in concept and in practice. At present, we lack the means to describe the techniques of program construction and improvement in ways that properly link verification, documentation and adaptability.

– Scherlis and Scott (1983) in [Mason 86]
Chapter 1

Here is a problem

The goal is to prove that Axiom’s implementation of the Euclidean GCD algorithm is correct. From category EuclideanDomain (EUCDOM) we find the implementation of the Euclidean GCD algorithm:

\[
gcd(x,y) == \hspace{1cm} \text{--Euclidean Algorithm} \\
x := \text{unitCanonical } x \\
y := \text{unitCanonical } y \\
\text{while not } \text{zero? } y \text{ repeat} \\
\hspace{1cm} (x,y) := (y,x \text{ rem } y) \\
\hspace{1cm} y := \text{unitCanonical } y \\
\hspace{1cm} \text{-- this doesn’t affect the} \\
\hspace{1cm} \text{-- correctness of Euclid’s algorithm,} \\
\hspace{1cm} \text{-- but} \\
\hspace{1cm} \text{-- a) may improve performance} \\
\hspace{1cm} \text{-- b) ensures gcd(x,y)=gcd(y,x)} \\
\hspace{1cm} \text{-- if canonicalUnitNormal} \\
x
\]

The \text{unitCanonical} function comes from the category IntegralDomain (INTDOM) where we find:

\[
\text{unitNormal: } \% \text{ -> Record(unit:%,canonical:%,associate:%)} \\
\hspace{1cm} \text{++ unitNormal(x) tries to choose a canonical element} \\
\hspace{1cm} \text{++ from the associate class of x.} \\
\hspace{1cm} \text{++ The attribute canonicalUnitNormal, if asserted, means that} \\
\hspace{1cm} \text{++ the “canonical” element is the same across all associates of x} \\
\hspace{1cm} \text{++ if } \text{spad{unitNormal(x) = [u,c,a]}} \text{ then} \\
\hspace{1cm} \text{++ } \text{spad{u*c = x}, spad{a*u = 1}.} \\
\text{unitCanonical: } \% \text{ -> } \% \\
\hspace{1cm} \text{++ spad{unitCanonical(x)} returns spad{unitNormal(x).canonical}.}
\]

implemented as
CHAPTER 1. HERE IS A PROBLEM

UCA ==> Record(unit:%, canonical:%, associate:%)
if not (% has Field) then
 unitNormal(x) == [1$%,x,1$%]$UCA -- the non-canonical definition
unitCanonical(x) == unitNormal(x).canonical -- always true
recip(x) == if zero? x then "failed" else _exquo(1$%,x)
unit?(x) == (recip x case "failed" => false; true)
if % has canonicalUnitNormal then
 associates?(x,y) ==
 (unitNormal x).canonical = (unitNormal y).canonical
else
 associates?(x,y) ==
 zero? x => zero? y
 zero? y => false
 x exquo y case "failed" => false
 y exquo x case "failed" => false
 true

1.1 Approaches

There are several systems that could be applied to approach the proof.
The plan is to initially look at Coq and ACL2. Coq seems to be applicable at the Spad level.
ACL2 seems to be applicable at the Lisp level. Both levels are necessary for a proper proof.
Coq is very close to Spad in spirit so we can use it for the high-level proofs.
ACL2 is a Lisp-level proof technology which can be used to prove the Spad-to-Lisp level.
There is an LLVM to ACL2 translator which can be used to move from the GCL Lisp level
to the hardware since GCL compiles to C.
Quoting from Hardin [Hardin 14]

LLVM is a register-based intermediate in Static Single Assignment (SSA) form.
As such, LLVM supports any number of registers, each of which is only assigned once, statically (dynamically, of course, a given register can be assigned any number of times). Appel has observed that “SSA form is a kind of functional programming”; this observation, in turn, inspired us to build a translator from LLVM to the applicative subset of Common Lisp accepted by the ACL2 theorem prover. Our translator produces an executable ACL2 specification that is able to efficiently support validation via testing, as the generated ACL2 code features tail recursion, as well as in-place updates via ACL2’s single-threaded object (stobj) mechanism. In order to ease the process of proving properties about these translated functions, we have also developed a technique for reasoning about tail-recursive ACL2 functions that execute in-place, utilizing a formally proven “bridge” to primitive-recursive versions of those functions operating on lists.
1.1. APPROACHES

Hardin [Hardin 13] describes the toolchain thus:

Our translation toolchain architecture is shown in Figure 1. The left side of the figure depicts a typical compiler frontend producing LLVM intermediate code. LLVM output can be produced either as a binary “bitcode” (.bc) file, or as text (.ll file). We chose to parse the text form, producing an abstract syntax tree (AST) representation of the LLVM program. Our translator then converts the AST to ACL2 source. The ACL2 source file can then be admitted into an ACL2 session, along with conjectures that one wishes to prove about the code, which ACL2 processes mostly automatically. In addition to proving theorems about the translated LLVM code, ACL2 can also be used to execute test vectors at reasonable speed.

Note that you can see the intermediate form from clang with

```
clang -O4 -S -emit-llvm foo.c
```

Both Coq and the Hardin translator use OCAML [OCAML 14] so we will have to learn that language.

Figure 1: LLVM-to-ACL2 translation toolchain.
Chapter 2

Theory

The proof of the Euclidean algorithm has been known since Euclid. We need to study an existing proof and use it to guide our use of Coq along the same lines, if possible. Some of the “obvious” natural language statements may require Coq lemmas.

From WikiProof [Wiki 14a] we quote:

Let

\[a, b \in \mathbb{Z} \]

and \(a \neq 0 \) or \(b \neq 0 \).

The steps of the algorithm are:

1. Start with \((a, b)\) such that \(|a| \geq |b|\). If \(b = 0\) then the task is complete and the GCD is \(a\).
2. if \(b \neq 0\) then you take the remainder \(r\) of \(a/b\).
3. set \(a \leftarrow b\), \(b \leftarrow r\) (and thus \(|a| \geq |b|\) again).
4. repeat these steps until \(b = 0\)

Thus the GCD of \(a\) and \(b\) is the value of the variable \(a\) at the end of the algorithm.

The proof is:

Suppose

\[a, b \in \mathbb{Z} \]

and \(a \neq 0 \) or \(b \neq 0 \).

From the division theorem, \(a = qb + r\) where \(0 \leq r \leq |b|\)

From GCD with Remainder, the GCD of \(a\) and \(b\) is also the GCD of \(b\) and \(r\).

Therefore we may search instead for the \(gcd(b, r)\).
Since $|r| \geq |b|$ and $b \in \mathbb{Z}$, we will reach $r = 0$ after finitely many steps. At this point, $gcd(r, 0) = r$ from GCD with Zero. We quote the Division Theorem proof [Wiki 14b]: For every pair of integers a, b where $b \neq 0$, there exist unique integers q, r such that $a = qb + r$ and $0 \leq r \leq |b|$.
Chapter 3

Software Details

3.1 Installed Software

Install CLANG, LLVM

http://llvm.org/releases/download.html

Install OCAML

sudo apt-get install ocaml

An OCAML version of gcd would be written

let rec gcd a b = if b = 0 then a else gcd b (a mod b)

val gcd : int -> int -> int = <fun>
Bibliography

3.2 Coq Spad proofs

[Bertot 04] Bertot, Yves; Castéran, Pierre
“Interactive Theorem Proving and Program Development”
Springer ISBN 3-540-20854-2

[OCAML 14] .
The OCAML website
ocaml.org

3.3 ACL2 Lisp proofs

[Kaufmann 14] Kaufmann, Matt; Moore, J Strother
“ACL2 Version 6.4”
www.cs.utexas.edu/users/moore/accl2

3.4 Lisp to Hardware

[Daly 10] Daly, Timothy
“Intel Instruction Semantics Generator”
daly.axiom-developer.org/TimothyDaly_files/publications/sei/intel/intel.pdf

[Hardin 13] Hardin, David S.; McClurg, Jedidiah R.; Davis, Jennifer A.
“Creating Formally Verified Components for Layered Assurance with an LLVM to ACL2 Translator”

[Hardin 14] Hardin, David S.; Davis, Jennifer A.; Greve, David A.; McClurg, Jedidiah R.
“Development of a Translator from LLVM to ACL2”
arxiv.org/pdf/1406.1566
[Mason 86] Mason, Ian A.
“The Semantics of Destructive Lisp”
Center for the Study of Language and Information ISBN 0-937073-06-7

[Wiki 14a] ProofWiki
“Euclidean Algorithm”
proofwiki.org/wiki/Euclidean_Algorithm

[Wiki 14b] ProofWiki
“Division Theorem”
proofwiki.org/wiki/Division_Theorem