The 30 Year Horizon

Manuel Bronstein
James Davenport
Albrecht Fortenbacher
Jocelyn Guidry
Michael Monagan
Jonathan Steinbach
Stephen Watt

William Burge
Michael Dewar
Patrizia Gianni
Richard Jenks
Scott Morrison
Robert Sutor
Jim Wen

Timothy Daly
Martin Dunstan
Johannes Grabmeier
Larry Lambe
William Sit
Barry Trager
Clifton Williamson

Volume 3: Axiom Programmers Guide
This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

- Neither the name of The Numerical Algorithms Group Ltd. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Inclusion of names in the list of credits is based on historical information and is as accurate as possible. Inclusion of names does not in any way imply an endorsement but represents historical influence on Axiom development.
<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Albaugh</td>
<td>Cyril Alberga</td>
<td>Roy Adler</td>
</tr>
<tr>
<td>Christian Albrecht</td>
<td>Richard Anderson</td>
<td>George Andrews</td>
</tr>
<tr>
<td>S. J. Atkins</td>
<td>Jeremy Avigad</td>
<td>Henry Baker</td>
</tr>
<tr>
<td>Martin Baker</td>
<td>Stephen Balzac</td>
<td>Yurij Baransky</td>
</tr>
<tr>
<td>David R. Barton</td>
<td>Thomas Baruchel</td>
<td>Gerald Baumgartner</td>
</tr>
<tr>
<td>Gilbert Baumslag</td>
<td>Michael Becker</td>
<td>Nelson H. F. Beebe</td>
</tr>
<tr>
<td>Jay Belanger</td>
<td>David Bindel</td>
<td>Fred Blair</td>
</tr>
<tr>
<td>Vladimir Bondarenko</td>
<td>Mark Botch</td>
<td>Raoul Bourquin</td>
</tr>
<tr>
<td>Alexandre Bouyer</td>
<td>Karen Branan</td>
<td>Wolfgang Brehm</td>
</tr>
<tr>
<td>Peter A. Broadbery</td>
<td>Martin Brock</td>
<td>Manuel Bronstein</td>
</tr>
<tr>
<td>Christopher Brown</td>
<td>Stephen Buchwald</td>
<td>Florian Bundschuh</td>
</tr>
<tr>
<td>Luanne Burns</td>
<td>William Burge</td>
<td>Ralph Byers</td>
</tr>
<tr>
<td>Quentin Carpent</td>
<td>Pierre Casteran</td>
<td>Robert Cavines</td>
</tr>
<tr>
<td>Bruce Char</td>
<td>Ondrej Certik</td>
<td>Tzu-Yi Chen</td>
</tr>
<tr>
<td>Bobby Cheng</td>
<td>Cheekai Chin</td>
<td>David V. Chudnovsky</td>
</tr>
<tr>
<td>Gregory V. Chudnovsky</td>
<td>Mark Clements</td>
<td>James Cloos</td>
</tr>
<tr>
<td>Jia Zhao Cong</td>
<td>Josh Cohen</td>
<td>Christophe Conil</td>
</tr>
<tr>
<td>Don Coppersmith</td>
<td>George Corliss</td>
<td>Robert Corless</td>
</tr>
<tr>
<td>Gary Cornell</td>
<td>Meino Cramer</td>
<td>Jeremy Du Croz</td>
</tr>
<tr>
<td>David Cyganski</td>
<td>Nathaniel Daly</td>
<td>Timothy Daly Sr.</td>
</tr>
<tr>
<td>Timothy Daly Jr.</td>
<td>James H. Davenport</td>
<td>David Day</td>
</tr>
<tr>
<td>James Demmel</td>
<td>Didier Deshommes</td>
<td>Michael Dewar</td>
</tr>
<tr>
<td>Inderjit Dhillon</td>
<td>Jack Dongarra</td>
<td>Jean Della Dora</td>
</tr>
<tr>
<td>Gabriel Dos Reis</td>
<td>Claire DiCrescendo</td>
<td>Sam Dooley</td>
</tr>
<tr>
<td>Zlatko Drmac</td>
<td>Lionel Ducos</td>
<td>Iain Duff</td>
</tr>
<tr>
<td>Lee Duhem</td>
<td>Martin Dunstan</td>
<td>Brian Dupee</td>
</tr>
<tr>
<td>Dominique Duval</td>
<td>Robert Edwards</td>
<td>Heow Eide-Goodman</td>
</tr>
<tr>
<td>Lars Erickson</td>
<td>Mark Fahey</td>
<td>Richard Fateman</td>
</tr>
<tr>
<td>Bertfried Fauser</td>
<td>Stuart Feldman</td>
<td>John Fletcher</td>
</tr>
<tr>
<td>Brian Ford</td>
<td>Albrecht Fortenbacher</td>
<td>George Frances</td>
</tr>
<tr>
<td>Constantine Frangos</td>
<td>Timothy Freeman</td>
<td>Korrim Fu</td>
</tr>
<tr>
<td>Marc Gaetano</td>
<td>Rudiger Gebauer</td>
<td>Van de Geijn</td>
</tr>
<tr>
<td>Kathy Gerber</td>
<td>Patricia Gianni</td>
<td>Gustavo Goertkin</td>
</tr>
<tr>
<td>Samantha Goldrich</td>
<td>Holger Gollan</td>
<td>Teresa Gomez-Diaz</td>
</tr>
<tr>
<td>Laureano Gonzalez-Vega</td>
<td>Stephen Gortler</td>
<td>Johannes Grabmeier</td>
</tr>
<tr>
<td>Matt Grayson</td>
<td>Klaus Ebbe Grue</td>
<td>James Griesmer</td>
</tr>
<tr>
<td>Vladimir Grinberg</td>
<td>Oswald Gschneider</td>
<td>Ming Gu</td>
</tr>
<tr>
<td>Jocelyn Guidry</td>
<td>Gaetan Hache</td>
<td>Steve Hague</td>
</tr>
<tr>
<td>Satoshi Hamaguchi</td>
<td>Sven Hammarling</td>
<td>Mike Hansen</td>
</tr>
<tr>
<td>Richard Hanson</td>
<td>Richard Harke</td>
<td>Bill Hart</td>
</tr>
<tr>
<td>Vilya Harvey</td>
<td>Martin Hassner</td>
<td>Arthur S. Hathaway</td>
</tr>
<tr>
<td>Dan Hatton</td>
<td>Waldek Hebisch</td>
<td>Karl Hegbloom</td>
</tr>
<tr>
<td>Ralf Hemmecke</td>
<td>Henderson</td>
<td>Antoine Hersen</td>
</tr>
<tr>
<td>Nicholas J. Higham</td>
<td>Hoon Hong</td>
<td>Roger House</td>
</tr>
<tr>
<td>Gernot Hueber</td>
<td>Pietro Iglio</td>
<td>Alejandro Jakubi</td>
</tr>
<tr>
<td>Richard Jenks</td>
<td>Bo Kagstrom</td>
<td>William Kahan</td>
</tr>
<tr>
<td>Kyriakos Kalorkoti</td>
<td>Kai Kaminski</td>
<td>Grant Keady</td>
</tr>
<tr>
<td>Wilfrid Kendall</td>
<td>Tony Kennedy</td>
<td>David Kincaid</td>
</tr>
<tr>
<td>Keshav Kini</td>
<td>Ted Kosan</td>
<td>Paul Kosinski</td>
</tr>
<tr>
<td>Igor Kozachenko</td>
<td>Fred Krogh</td>
<td>Klaus Kusche</td>
</tr>
</tbody>
</table>
Contents

1 Details for Programmers 1
 1.1 Examining Internals ... 1
 1.2 Makefile ... 3

Bibliography 5
New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commercial product. On September 3, 2002 Axiom was released under the Modified BSD license, including this document. On August 27, 2003 Axiom was released as free and open source software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr. Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The second volume is for programmers. The third volume is reference material. We’ve also added a fourth volume for developers. All of these changes represent an experiment in print-on-demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three hundred man-years of research and has, as of September 3, 2003, 143 people listed in the credits. All of these people have contributed directly or indirectly to making Axiom available. Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent the tools that support the Computational Mathematician working 30 years from now. How will research be done when every bit of mathematical knowledge is online and instantly available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million domains? How can we integrate theory with code? How will we integrate theorems and proofs of the mathematics with space-time complexity proofs and running code? What visualization tools are needed? How do we support the conceptual structures and semantics of mathematics in effective ways? How do we support results from the sciences? How do we teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
Chapter 1

Details for Programmers

Axiom maintains internal representations for domains. There are functions for examining the internals of objects of a particular domain.

1.1 Examining Internals

One useful function is `devaluate` which takes an object and returns a Lisp pair. The CAR of the pair is the Axiom type. The CDR of the pair is the object representation. For instances, consider the session where we create a list of objects using the domain `List(Any)`.

```
1) -> w:=[1,7.2,"luanne",3*x^2+5,_,
       (3*x^2+5)::FRAC(POLY(INT)),_,
       (3*x^2+5)::POLY(FRAC(INT)),_,
       (3*x^2+5)::EXPR(INT)]$LIST(ANY)

2 2 2 2
(1) [1,7.2,"luanne",3x + 5,3x + 5,3x + 5,3x + 5]  Type: List(Any)
```

The first object, `1` is a primitive object that has the domain `PI` and uses the underlying Lisp representation for the number.

```
2) -> devaluate(1)$Lisp

(2) 1  Type: SExpression
```

The second object, `7.2` is a primitive object that has the domain `FLOAT` and uses the underlying Lisp representation for the number, in this case, itself a pair whose CAR is the floating point base and whose CDR is the mantissa,

```
3) -> devaluate(7.2)$Lisp

(3) (265633114661417543270 . - 65)  Type: SExpression
```

The third object, "luanne" is from the domain `STRING` and uses the Lisp string representation.
(4) -> devaluate("luanne")$Lisp

Type: SExpression

(4) luanne

Now we get more complicated. We illustrate various ways to store the formula $3x^2 + 5$ in different domains. Each domain has a chosen representation.

(5) -> devaluate(3*x^2+5)$Lisp

Type: SExpression

(5) (1 x (2 0 . 3) (0 0 . 5))

The fourth object, $3x^2 + 5$ is from the domain \texttt{POLY(INT)}. It is stored as the list
(1 x (2 0 . 3) (0 0 . 5))

From the domain \texttt{POLY} (Vol 10.3, POLY) we see that

\begin{verbatim}
Polynomial(R:Ring): ...
 == SparseMultivariatePolynomial(R, Symbol) add ...
\end{verbatim}

So objects from this domain are represented as \texttt{SMP(INT,Ssymbol)}. From this domain we see that

\begin{verbatim}
SparseMultivariatePolynomial(R: Ring,VarSet: OrderedSet): ...
 == add
 --representations
 D := SparseUnivariatePolynomial(%)
\end{verbatim}

So objects from this domain are represented as a \texttt{SUP(INT)}

\begin{verbatim}
SparseUnivariatePolynomial(R:Ring): ...
 == PolynomialRing(R,NonNegativeInteger) add
\end{verbatim}

So objects from this domain are represented as \texttt{PR(INT,NNI)}

\begin{verbatim}
PolynomialRing(R:Ring,E:OrderedAbelianGroup): ...
 FreeModule(R,E) add
 --representations
 Term:= Record(k:E,c:R)
 Rep:= List Term
\end{verbatim}

So objects from this domain are represented as \texttt{FM(INT,NNI)}

\begin{verbatim}
FreeModule(R:Ring,S:OrderedSet):
 == IndexedDirectProductAbelianGroup(R,S) add
 --representations
 Term:= Record(k:S,c:A)
 Rep:= List Term
\end{verbatim}

So objects from this domain are represented as \texttt{IDPAG(INT,Nni)}

\begin{verbatim}
IndexedDirectProductAbelianGroup(A:AbelianGroup,S:OrderedSet):
 == IndexedDirectProductAbelianMonoid(A,S) add
\end{verbatim}

So objects from this domain are represented as \texttt{IDPAM(INT,Nni)}
1.2. MAKEFILE

So objects from this domain are represented as IDPO(INT,NNI)

IndexedDirectProductObject(A:SetCategory,S:OrderedSet):
 == add
 -- representations
 Term:= Record(k:S,c:A)
 Rep:= List Term

(6) -> devaluate((3*x^2+5)::FRAC(POLY(INT)))$Lisp

 (6) ((1 x (2 0 . 3) (0 0 . 5)) 0 . 1)
 Type: SExpression

(7) -> devaluate((3*x^2+5)::POLY(FRAC(INT)))$Lisp

 (7) (1 x (2 0 3 . 1) (0 0 5 . 1))
 Type: SExpression

(8) -> devaluate((3*x^2+5)::EXPR(INT))$Lisp

 (8) ((1 [[x,0,%symbol()()()],NIL,1,1024] (2 0 . 3) (0 0 . 5)) 0 . 1)
 Type: SExpression

(9) -> devaluate(w)$Lisp

 (9)
 ((PositiveInteger) . 1) ((Float) 265633114661417543270 . - 65)
 ((String) . luanne) ((Polynomial (Integer)) 1 x (2 0 . 3) (0 0 . 5))
 ((Fraction (Polynomial (Integer)))) (1 x (2 0 . 3) (0 0 . 5)) 0 . 1)
 ((Polynomial (Fraction (Integer)))) 1 x (2 0 3 . 1) (0 0 5 . 1))

 ((Expression (Integer))
 (1 [[x,0,%symbol()()()],NIL,1,1024] (2 0 . 3) (0 0 . 5)) 0 . 1)

 Type: SExpression

1.2 Makefile

This book is actually a literate program[Knut92] and can contain executable source code. In particular, the Makefile for this book is part of the source of the book and is included below.
Bibliography
